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Interfacial Profiles Between Coexisting Phases in
Thin Films: Cahn�Hilliard Treatment Versus
Capillary Waves
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A symmetric binary mixture (A, B) below its critical temperature Tc of
unmixing is considered in a thin-film geometry confined between two parallel
walls, where it is assumed that one wall prefers A and the other wall prefers B.
Then an interface between the coexisting unmixed phases is stabilized, which
(above the wetting transition temperature) occurs in the center of the film for
an average concentration of c=1�2. We consider how the concentration profile
c(z) across the thin film depends on the film thickness D. By Monte Carlo
simulation of a lattice model for a polymer mixture it is shown that for
relatively small D the width of the interface scales like w B D, while for larger
D a crossover to a behavior w B - D occurs. This behavior is explained by
phenomenological theories: it is shown that the behavior at small D can be
understood by a suitable extension of the Cahn�Hilliard ``gradient-square''-type
theory, while the behavior for large D can be traced back to the behavior of
capillary waves exposed to a short-range potential by the walls. Corrections due
to fast concentration variations, as they occur in the strong-segregation limit of
a polymer mixture, can be accounted for by self-consistent field theory. Subtle
problems occur, however, with respect to the proper combination of these
theories with the capillary wave approximation, particularly at intermediate
values of D.

KEY WORDS: Polymer mixtures; concentration profiles; Cahn�Hilliard
theory; capillary wave Hamiltonian; self-consistent field theory; Monte Carlo
simulations; wetting.
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1. INTRODUCTION

The theoretical understanding of interfacial profiles between coexisting
phases has been a longstanding challenge.(1�26) After Cahn and Hilliard(6)

in a seminal pioneering work proposed the ``gradient square'' theory for
binary mixtures, to derive the (intrinsic(1)) interfacial profile in the frame-
work of a mean field type treatment, this approach has been extended to
treat interfaces in polymer solutions, (7) polymer blends(8�10, 10�13, 16�23, 25, 26)

block copolymer mesophases and other modulated phases in complex
fluids(14, 15, 24) etc. Of course, for a full understanding of the interfacial
profile one has to amend the mean field treatment by a consideration of
statistical fluctuations neglected in this treatment, notably long wavelength
fluctuations of the local position of the center of the interfacial profile
(usually termed ``capillary waves'').(1�4, 19, 21, 25�31)

Here we focus on another extension of the ``gradient square'' theory,
namely the profile of an interface in a geometry confined between two
parallel walls a distance D apart. While interfaces bound to external walls
have been considered for a long time in the context of wetting trans-
itions, (2, 3, 23, 32�38) interfaces confined by two walls have been studied only
more recently, (39�46) focusing on the interface localization��delocalization
transition that may occur in this geometry. In the present study, however,
we investigate another aspect of these confined interfaces that has been
discovered in recent simulations(47�49) and experiments on polymer
mixtures:(47, 50) there occurs a significant reduction of the intrinsic width w0

of the interfacial profile already for relatively thick films, D>>w0 . We
expect that this phenomenon is important also for a description of inter-
face-location��delocalization transitions and wetting phenomena, since it
implies a renormalization of parameters entering the effective interface
Hamiltonian.(51) This ``squeezing'' of the intrinsic interfacial profile also is
important for experimental studies that try to deduce effective interaction
parameters from measured concentration profiles(52) of polymer mixtures,
but apply the standard theory for interfacial widths of strongly segregated
systems(8, 9, 13, 16, 23) that ignores the finite thickness D of the thin film that
is used.

The outline of the present paper, hence, is as follows: we first (Sec-
tion 2) present a phenomenological theory of this squeezing of interfacial
profiles in thin films, by a fairly straightforward extension of the theory of
Parry and Evans, (42) who did not pay attention to this effect. As these
authors, we consider only short range forces of the walls for simplicity,
although for a quantitative description of experiments(47, 50, 52, 53) long range
van der Waals forces should be used (numerical evidence shows that for
long range forces there even is a stronger squeezing of the interfacial profile
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due to confinement than for short range forces(49)). We show that there is
a rather broad range of D where w0 varies nearly linear with D. While
this treatment implicitly implies the case of a weakly segregated mixture,
where concentration variations are slow, we then (Section 3) treat the alter-
native case of a strongly segregated polymer mixture where the profile
varies across the interface from ,A=0 to ,A=1, but nevertheless a
``square gradient'' theory applies, in the limit of long chain length of the
polymers.(8, 9) The case of intermediate segregation is more complicated,
since even a free, unconfined interface of a polymer mixture exhibits a
profile involving two different lengths.(12) We study such intermediate
cases in Section 4 by a numerical version of the self-consistent field
theory(8, 9, 11, 13, 16�18) that uses Monte Carlo��generated single chain con-
figurations as an input.(21, 51, 54) Section 5 then summarizes and discusses
our results, paying attention also to the problem how the present results
can be combined with the effects of capillary waves in this confined
geometry which for D � � lead to an apparent(47, 48) interfacial width
w B - D while the intrinsic width w0 saturates at a finite value��the mean
field result for an unconfined free interface.

II. REDUCTION OF INTRINSIC INTERFACIAL WIDTHS OF
COEXISTING SYMMETRICAL MIXTURES CONFINED
BY ``COMPETING'' WALLS

We consider here a symmetrical binary mixture (AB) sufficiently close
to the bulk critical point such that the concentration variations of interest
are of rather long range, and a Ginzburg�Landau type description in terms
of the order parameter m(z)=[[c(z)&ccrit]�ccrit] (here c(z) is the concen-
tration of species A at position z and the critical concentration ccrit of
species A is ccrit=1�2) is applicable. We consider a thin film geometry with
two ``competing'' planar walls, oriented perpendicular to the z-direction, a
distance D apart (Fig. 1). ``Competing'' walls mean that the left wall
preferentially attracts species B, and the right wall preferentially attracts A,
and thus the concentration c(z), as well as m(z), increases monotonically
from left to right. We take these forces between the walls and the molecules
(or atoms, respectively) of the mixture to be of short range, i.e. they act
locally on particles adjacent to the walls only, for the sake of simplicity,
and furthermore we assume their absolute strength equal, so that the
profiles m(z) shown in Fig. 1 must be antisymmetric around the point z=0,
m(z=0)=0, i.e., the center of the profile is in the middle of the thin film. Of
course, here we have also assumed that these forces exerted on the particles
close to the wall are sufficiently strong, so that no symmetry breaking due to
the localization of the interface is possible at the considered temperature.
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Fig. 1. Schematic order parameter profiles m(z) versus z, for a symmetrical phase separated
mixture confined between two competing walls, such that the left wall prefers the B-rich phase
and the right wall prefers the A-rich phase. The upper part shows a large intrinsic D of
the thin film, the lower part a smaller thickness. The definition of the intrinsic thickness-
dependent interfacial width w0(D) is indicated. For further explanations cf. text.

Note that for large enough D the interface localization-delocalization
transition would occur close to the wetting transition temperature of the
corresponding semi-infinite system,(39�46) and recall the argument due to
Cahn(32) that close to the bulk critical point of a mixture the surfaces
always should be wet.

We now emphasize that in general we expect five distinct regions in
m(z) given the assumptions made above: In the first region close to the
left wall, m(z) will decay from its value &m0(D) right at the wall to the
value &mb , characteristic for the left branch of the coexistence curve,
c(1)

coex , of the binary mixture in the bulk [&mb=[c (1)
coex&ccrit]�ccrit , +mb=

[c (2)
coex&ccrit]�ccrit]. This decay occurs over a length scale of the same order

as the correlation length !b in the bulk. In the second regime where
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m(z)r&mb [centered at &zb defined by m(&zb)=&mb] the slope of the
profile dm(z)�dz reaches a minimum, and in the limit D � � the profile
would become completely flat. Near the center of the film we have the
interfacial profile in a strict sense, which for large D is described simply
by(1�6) m(z)=mb tanh[z�w0(D)] with w0(D � �)=2!b . For not so large
D, however, the ``intrinsic width'' w0(D) of this profile is significantly
reduced, cf. Fig. 1 (lower part), and this interfacial regime is no longer so
clearly distinguished from the first regime, since the second regime where
m(z) stays nearly flat when m(z)r&mb , nearly has disappeared [and so
does the fourth regime where m(z)r+mb near z=zb]. In the fifth regime
we have the increase from m(z)r+mb to m(z=D�2)=m0(D), which
clearly is dependent on the precise nature of the boundary conditions at the
walls (unlike mb and !b which are not dependent on these boundary condi-
tions, of course).

From this (qualitative) expectation that the concentration profile
exhibits five distinct regimes (the central regime is expected to have a width
of 2!b , the others must have at least a width of !b in order for this picture
to make sense) one already can predict that the asymptotic regime of
this interfacial behavior is only reached for D>>6!b , while a rather non-
trivial behavior [including a significant reduction of the width w0(D) in
comparison to 2!b] is expected if this condition is not met. Of course,
Fig. 1 makes sense only for the case of rather weak segregation, close
enough to the bulk critical point, where mb=1 for our normalization. If
one can reach a case of strong segregation but still is in a regime of com-
plete wetting, then mb � 1 and also m0(D)=1, and one obtains a much
simpler situation than shown in Fig. 1, with m(z) varying from &1 at z=
&D�2 to +1 at z=D�2 in a single step [a profile varying similar to
tanh [z�w0(D)]]. It has been predicted(55) that such a situation (strong
segregation in the bulk but complete wetting at a surface) is typically
realized in polymer mixtures, and this prediction was confirmed by corre-
sponding Monte Carlo simulations.(48, 51, 56) We shall return to this case of
strong segregation in the next section.

In order to calculate the explicit form of this nontrivial profile in Fig. 1
from a Ginzburg�Landau type theory, (1�6, 42) it is convenient to rescale the
order parameter m(z) by its bulk value, M(Z)#m(z)�mb , and also lengths
are measured in units of the bulk correlation length, Z=z�!b . Then the
rescaled free energy of the film can be written as follows(3, 42)

!&1
b F (D)=|

+D�(2!b)

&D�(2!b)
dZ[& 1

2 M 2(Z)+ 1
4 M4(Z)+(dM�dZ)2]

+(!b�*)[M2(&D�2)+M2(D�2)]+H1[M(&D�2)&M(D�2)]

(2.1)
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Note that at z=+D�2 we have applied a (normalized) field H1 and
at z=&D�2 a (normalized) field &H1 coupling to the order parameter;
this term represents the preferential attraction of species A to the right wall,
species B to the left wall. As is well known, (3) one must allow in the ``bare''
wall free energy [the second line of Eq. (2.1)] a term proportional to M2

as well (to account for the effect of ``missing neighbors'' and possible
change of interactions near the wall, etc.). Following common notation, (3)

the coefficient of this term has been put inversely proportional to the so
called ``extrapolation length'' * which is a microscopic length (of the order
of the interaction range in a model with short range interactions). Note
that F(D) is normalized per unit surface area of the walls, and in units
where the bulk free energy per unit volume is -1�4.

Now the profile M(Z) in Fig. 1 results from seeking the minimum of
the free energy functional, Eq. (2.1). The Euler�Lagrange equation corre-
sponding to Eq. (2.1) is

&M(Z)+M3(Z)&2
d2M(Z)

dZ2 =0 (2.2)

with the boundary conditions

dM�dZ&(!b�*) M=H1 �2, Z=&D�2 (2.3)

dM�dZ+(!b�*) M=H1 �2, Z=+D�2 (2.4)

After multiplication of the Euler�Lagrange equation with M$#dM�dZ
one can integrate once to find

\dM
dZ +

2

=&
1
2

M2(Z)+
1
4

M4(Z)+
1
4

&2p(D)=[M2(Z)&1]2�4&2p(D)

(2.5)

where the integration constant was denoted as 1�4&2p(D), for the sake of
consistency of notation with the work of Parry and Evans.(42) For D � �,
we expect that dM�dZ � 0 for M(Z)=\1 (corresponding to the flat
regions 2 and 4 in Fig. 1) and thus 2p(D � �) � 0.

Equation (2.5) can also be combined, with the boundary conditions,
Eqs. (2.3), (2.4), and hence we conclude, using M� =M(Z=D�2!b) as an
abbreviation,

(M� !b�*&H1 �2)2=(M� &1)2�4&2p(D) (2.6)

1050 Binder et al.



and from Eq. (2.5) we find, invoking the symmetry M(&Z)=&M(Z),

D�2!b=|
M�

0
dM�- (M2&1)2�4&2p (2.7)

Using once more Eq. (2.6) one finds a closed expression for M� as func-
tion of D in terms of the inverse function expressed as a quadrature,

D�2!b=|
M�

0
dM�- [(M 2&1)2&(M� 2&1)2]�4+(M� !b �*&H1 �2)2 (2.8)

The maximum slope of M(Z) at Z=0 [where also M(Z=0)=0, see
Fig. 1] can be written as

dM
dZ }max

=[1�4&2p(D)]1�2=[(M� !b �*&H1 �2)2&M� 4�4+M� 2�2]1�2 (2.9)

Noting that for D � � we must have 2p=0 (otherwise the integral in
Eq. (2.7) would converge to a finite constant) we can obtain from Eq. (2.6)
straightforwardly the local order parameter M� � at the surface, for this
situation of complete wetting,

M� � !b �*&H1�2=&(M� 2
�&1)�2 (2.10)

The (second-order) wetting transition occurs when(55) M� � 1, i.e.,
for H1c=2!b �*. Hence the situation shown in Fig. 1 requires H1>H1c

and then M� �>1. In general, we expect for finite D that M� <M� � and
for D � � we have a smooth convergence of M� towards M� � . This
expectation can be verified from Eq. (2.6) by writing M� =M� �&$M and
expanding to first order in $M, using also Eq. (2.10),

[2(!b �*)(M� �!b �*&H1 �2)+M� �(M� 2
�&1)] $M=2p (2.11)

or

$M=[(&!b �*+M� �)(M� 2
�&1)]&1 2p (2.12)

For large D we shall find that 2p is very small [2p B exp(&D�2!b), see
Eq. (2.18) below], and thus M� rM� � . For D � 0 we see from Eq. (2.7)
that then also M� � 0, and hence in this limit the integral can be evaluated
expanding the square root as

\M4

4
&

M2

2
+

1
4

&2p+
&1�2

r\1
4

&2p+
&1�2

[1+M2�(1&42p)&+ } } } ]

(2.13)
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and hence we obtain

D�2!b=_M� <\1
4

&2p+
1�2

&[1+M� 2�(3&12 2p)&+ } } } ] (2.14)

In this limit where D�2!b rM� �( 1
4&2p)1�2<<1 we also have M(Z)=

2M� Z!b �D, the profile is simply linear, and from Eq.(2.9) we conclude that

dM
dZ }max

=(1�4&2p)1�2
rH1 �2, D � 0 (2.15)

We expect that Eq. (2.15) remains true as long as M� <<1, i.e.
D�2!b<<2�- 1

4&2pr4�H1 . Note that in our normalization H1 is dimen-
sionless and typically larger than one, since H1>H1c=2!b �*>>1. The fact
that the inverse of dM�dZ|max , which can be considered as a measure of the
(normalized) interfacial width w0(D), remains non-vanishing as D � 0 can
be understood from the fact that the gradient energy (dM�dZ)2 in Eq. (2.1)
disallows too steep gradients and hence for D � 0 one can no longer have
a profile from &mb to +mb in Fig. 1 but only from &m~ to +m~ where also
m~ #M� mb � 0 as D � 0, because otherwise (dM�dZ)2 would diverge in this
limit.

We now consider the inverse limit of Eq. (2.7), namely D � � when
M� � M� � . This means that the profile in Fig. 1 develops a very broad
plateau near m(z)rmb for z>0 [and m(z)r&mb for z<0, respectively].
As a consequence, the dominating part of the integral in Eq. (2.7) comes
from Mr1, and this suggests to approximate the integral as follows

D
2!b

=|
1

0
dM�- (m2&1)2�4&2p+|

M�

1
dM�- (M 2&1)2�4&2p

r|
1

0
dM�- (m2&1)2�4&2p+|

M�

1
dM�- (M&1)2&2p

r|
1

0
dM�- (m2&1)2�4&2p+ln \M� &1+- (M� &1)2&2p

- &2p + (2.16)

The first integral in the last line of Eq. (2.16) is independent of the
boundary condition, and tends to ln[C�- &2p] for 2p � 0, where a
numerical evaluation shows that the constant C is roughly Cr4. The second
term in the last line of Eq. (2.16) becomes in this limit ln[2(M� &1)�- &2p],
and hence we conclude

D
2!b

rln _2C(M� &1)
&2p & (2.17)
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or

&2p=2C(M� &1) exp(&D�2!b) (2.18)

Hence, Eq. (2.9) yields in this limit for the maximum slope of the profile at
Z=0

dM
dZ }max

=- 1�4+2C(M� &1) exp(&D�2!b)

=
1
2

- 1+8C(M� &1) exp(&D�2!b) (2.19)

From Eq. (2.19) we obtain our central result for the width w0(D) in Fig. 1,
namely

w0(D)
w0(�)

=- 1+8C(M� &1) exp(&D�2!b), D>>2!b (2.20)

Eqs. (2.19) and (2.20) describe the approach to the limit of an ``intrinsic''
interface in the bulk, which has the width w0 #w0(�)=2!b in our units.
Since M� can appreciably exceed one, and the constant 8Cr32 is rather
large, the approach of w0(D) to w0(�) is rather slow, and hence a signifi-
cant reduction of the interfacial width of a confined interface is predicted.
Since in the considered limit we may replace M� by M� � in Eq. (2.20), we
can use Eq. (2.10) to write, for H1 near H1c , using also Cr4,

w0(D)
w0(�)

=- 1+16(H1&H1c) exp(&D�2!b)�(1+H1c �2) (2.21)

In Fig. 2 the approximation, Eq. (2.20), is compared to a full evalua-
tion of Eqs. (2.8) and (2.9) which can only be done numerically: for a given
choice of !b �* and H1 we first obtain M� � from Eq. (2.10). Then, we take
for this choice of !b �* and H1 several values of M� <M� � and evaluate the
values of D�2!b that then correspond to each M� . Since dM�dZ| max is readily
given in terms of M� as well, from Eq. (2.9), one can easily plot the ratio
w0(D)�w0(�)=dM�dZ|max, D=� �dM�dZ|max, D versus D�2!b . From Fig. 2
we see that for large D�!b the reduction of w0(D)�w0(�) is only dependent
on M� � , as expected from Eq. (2.20) since in this limit M� rM� � can be
used there. In addition, for 2�D�!b �8 the variation of w0(D) with D is
approximately linear, and a saturation of w0(D) at w0(�) only occurs for
D�!b�12, as predicted on the basis of the qualitative discussion of Fig. 1
at the beginning of this section.
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Fig. 2. (a) Plot of the reduced interfacial widths w0(D)�w0(�) versus D�!b for M� �=2, 3,
and 4, and two choices of *�!b : *�!b=1 (full curves) and *�!b=2 (broken curves). (b) Com-
parison of the exact numerical result for w0(D)�w0(�) versus D�!b for the choice M� �=2,
*�!b=1 with the approximation, Eq. (2.20) (broken curve).

If for a given M� the corresponding D has been evaluated from
Eq. (2.8), 2p(D) being known from Eq. (2.6), one can use Eq. (2.5) to
compute the full profile M(Z) in analogy with Eq. (2.7), namely

Z=|
M(Z)

0
dM$�- (M$2&1)2�4&2p (2.22)

Putting M(Z)=1 here one obtains the value Zb=zb �!b defined in
Fig. 1. All the details of Fig. 1 thus can be verified explicitly.

III. SELF-CONSISTENT FIELD TREATMENT FOR CONFINED
INTERFACES OF STRONGLY SEGREGATED POLYMER
MIXTURES

The Monte Carlo simulations of a lattice model of a strongly
segregated polymer mixture between competing walls(48) already have
provided numerical evidence (Fig. 3) that also in this limit there is a regime
where the observed interfacial width w apparently scales as w B D, despite
the fact that interfacial fluctuations yield a strong increase of w with D for
D>>w0(�) as well.

In order to present a theoretical understanding for this problem of
interface squeezing by confining walls in strongly segregated mixtures, we
present here an extension of the theory due to Helfand et al..(8, 9) The basic
quantities are the probability densities qA(z, t), qB(z, t) that one end of an
A or B chain with degree of polymerization t is at z. The position of the
other chain end is arbitrary. For a blend of A and B homopolymers of the
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same chain length NA=NB=N, these functions satisfy modified diffusion
equations,

�
�t

qA(z, t)=
b2

6
�2qA(z, t)

�z2 &wA qA(z, t) (3.1)

�
�t

qB(z, t)=
b2

6
�2qB(z, t)

�z2 &wBqB(z, t) (3.2)

where the ``fields'' wA , wB derive as w:=�f��p: . from a free energy density
that depends on the densities \A(z), \B(z)

\:(z)=
1
N |

N

0
dt q:(z, N&t) q:(z, t), :=a, B (3.3)

as

f =/\A \B+
`
2

(\A+\B&1)2 (3.4)

Here the factor (kBT )&1 is absorbed in the free energy density, / is the
Flory�Huggins parameter that causes the unmixing of the polymer mixture
(/N>>1 defines the strong segregation limit), and ` controls the inverse
compressibility of the blend.

While Eqs. (3.1)�(3.4) define the general framework of the self consis-
tent field theory of polymer blends, we here are only interested in the limit
N � � and treat also the blend as incompressible. As a consequence of
the limit N � �, one can take(8, 9) \:=q2

: (:=A, B) and put �q: ��t=0.
Redefining the units of length such that b�- 6/#1, Eqs. (3.1) and (3.2)
then can be replaced by

d2q:(z)
dz2 &

1
2

�f
�q:

=0, :=A, B (3.5)

We can interpret Eqs. (3.5) again as Euler�Lagrange equations of the
Lagrangian

L=| dz {1
2

f (qA , qB)+
1
2 \

dqA

dz +
2

+
1
2 \

dqB

dz +
2

= (3.6)

where we have a ``conservation law'' for the Hamiltonian

H=
1
2 \

dqA

dz +
2

+
1
2 \

dqB

dz +
2

&
1
2

f (qA , qB) (3.7)

if d�dz is reinterpreted as a ``time'' derivative, as usual.
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In the inhomogeneous case the quantity of interest is the excess free
energy (again units of (kBT )&1 being used)

Fexc=|
z1

z0

dz( f &wA\A&wB\B) (3.8)

which after integrating by parts can be rewritten as

Fexc=&2H(z1&z0)+2 |
z1

z0

dz

__\dqA

dz +
2

+\dqB

dz +
2

&&_qA
dqA

dz &}
z1

z0

&_qB
dqB

dz &}
z1

z0

(3.9)

We now simplify the problem by requiring strictly local incom-
pressibility \A+\B=q2

A+q2
B=1 everywhere in the system. It is convenient

to express this condition using polar coordinates

qA=sin ,, qb=cos , (3.10)

which amounts to replace the Lagrangian in Eq. (3.6) by

L=| dz {1
2 \

d,
dz+

2

+
1
2

f� (,)= (3.11)

where

f� (,)=\A\B= 1
4 sin2(2,) (3.12)

Then the excess free energy formulated in Eqs. (3.8) and (3.9) becomes

Fexc=&(z1&z0) 2�4+2 |
z1

z0

dz \d,
dz+

2

(3.13)

where 2 is a constant of motion resulting as

2�8=
1
2 \

d,
dz+

2

&
1
2

f� (,) (3.14)

This constant 2 is the analog of the constant &2p(D) of the previous
section.

As a first step, we apply this formalism to an interface in an infinitely
thick system without any boundary effects, such that limz � \� dq: �dz=0,
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and also limz � \� f (qA , qB=0. Since thus the constant of motion [Eq. (3.7)]
H=0 and also 2=0, we have

Fexc=2 |
+�

&�
dz \d,

dz+
2

=2 |
?�2

0
d,<d,

dz
(3.15)

and the corresponding Euler�Lagrange equation

d,
dz

=
1
2

sin 2, (3.16)

is solved by

ln(tan ,)=z, ,=arctan(exp(z)) (3.17)

and noting Eqs. (3.10) this is recognized as the familiar 1
2 [1+tanh(z�2)]

profile for the density, (8)

qA �qB=exp(z), qA=
exp(z)

1+exp(z)
(3.18)

From Eqs. (3.15) and (3.16) one notes that Fexc=1 is the free energy cost
of the interface in our units.

Next we consider a semi-infinite system, in order to discuss wetting
behavior in the strong segregation limit. Analogously to Eq. (2.1), we
choose a bare surface free energy of the form

F bare
surf =

2
*

(\0
A&\0

B)2&h1(\0
A&\0

B) (3.19)

where \0
A , \0

B are the densities at the surface, and h1 is a ``surface field'' in
suitable units, * being the analog of the ``extrapolation length'' used in
Eq. (2.1).

We now note that the above profile, Eqs. (3.17) and (3.18) is cutoff
by the surface, (23, 55) and thus it is convenient to introduce the angle
:=?&2,0 that corresponds to the values \0

A , \0
B reached in the surface

plane. The bulk part of the excess free energy can be written as (note 2=0
still holds)

F bulk
exc =|

�

0
dz \d,

dz+=|
?�2&:�2

0
d, sin 2,=

1
2

(1+cos :) (3.20)

and combining Eqs. (3.19) and (3.26) the total excess free energy becomes

F tot
exc= 1

2+cos :( 1
2&h1)+cos2 :�* (3.21)
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This free energy takes a minimum for

cos :=
*
2 \h1&

1
2+ (3.22)

A second order wetting transition occurs for *>0, at

hc
1=

1
2

+
2
*

(3.23)

while for 1�*�0 one has a first order wetting (as is actually observed in the
simulation(57) of the model shown in Fig. 3).

Finally we are now in the position to consider the case of thin films
of finite thickness D, where now the constant of motion 2 is nonzero. The
quantity that we wish to calculate is w0(D), defined from the inverse slope
in the center of the profile

w0(D)=(2d\A�dz)&1| z=0=(2d,�dz)&1| z=0=
1

- 1+2
(3.24)

where we have used that

d\A

dz
=

dq2
A

dz
=2qA

dqA

dz
=sin(2,)

d,
dz

(3.25)

Fig. 3. (a) Order parameter profiles m(z) versus z for films of thickness D=16, 32, 48, and
64 for the bond fluctuation model of a symmetrical polymer mixture (NA=NB=N=32,
=AA==BB=&=AB=&kB T= with ==0.03 corresponding to T�Tcb=0.48, =w=\0.1 being a
wall-monomer interaction of square well type and a range of 2 lattice spacings), using a
L_L_D geometry with two L_L surfaces along which periodic boundary condition act. All
lengths are measured in units of the lattice spacing. (b) Interfacial width w plotted versus D.
Note that for D<20 we have w B D here, while the value w0(�) predicted by the self-consis-
tent field theory (SCF) is shown as an arrow on the ordinate. From Werner et al.(48)
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and we note that in the center of the profile ,=?�4 since there \A=\B by
symmetry. From Eqs. (3.12) and (3.14) we have deduced that

\d,
dz+

2

=[2�4+ f� (,))]=[2+sin2(2,)]�4 (3.26)

and thus the counterpart of Eq. (2.22) for the profile becomes

z=| d,<\d,
dz+=2 |

,

?�4
d,� �- 2+sin2(2,� )

=
1

- 1+2
E1 \?�2&:,

1

- 1+2+ if 2>0 (3.27)

=E1\?�2&arccos \ cos :

- 1+2+ , - 1+2+ , if 2<0 (3.28)

E1 denoting the elliptic integral of the first kind. Denoting the angle
,(z=0)=,0 , and correspondingly :=?&2,0 , the excess free energy can
then be written as

F bulk
exc =&

1
4

2D+4 |
,4

?�4
d,

d,
dz

=
1
4

2D+2 |
,0

?�4
d,� - 2+sin2(2,� )

&
1
4

2D+- 1+2 E2 \?�2&:,
1

- 1+2+ for 2>0

={&
1
4

2D+E2 \?�2&arccos \ cos :

- 1+2+ , - 1+2+
+

2
2

E1 \?�2&arccos \ cos :

- 1+2+ , - 1+2+ = for 2<0

(3.29)

E2 being the elliptic integral of second kind. The surface part of the
excess free energy, from Eq. (3.19), can be written as

F bare
surf =&2h1 cos :+

2
*

cos2 : (3.30)

From these results one can show immediately for D � �, where 2 � 0 and
,0 � ,�2 hence : � 0, that

2r16 exp(&D)&8: exp(&D�2) (3.31)
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As anticipated above, 2 can be either positive (if :<2 exp(&D�2)) or
negative (if :>2 exp(&D�2)). In this limit the total free energy excess that
must be minimized becomes

F total
exc rconst&4: exp(&D�2)+:2(h1&2�*+1�2), :<2 exp(&D�2)

(3.32)

while for :>2 exp(&D�2) an extra term 4D exp(&D�2)[:&2 exp(&D�2)]
has to be added in Eq. (3.31). We are interested in the wetting case h1>hc

1 .
In that case, minimization of F total

exc with respect to : yields

:=2 exp(&D�2)�(h1&2�*+1�2) (3.33)

which yields in Eq. (3.31)

2=16 exp(&D)
h1&(1�2+2�*)
h1+1�2&2�*

(3.34)

Noting that hc
1=1�2+2�* and w0(�)=1 in our units, the final result

for the reduction of the interfacial width can be cast in a form very similar
to Eq. (2.21), namely

w0(D)
w0(�)

=_1+16
(h1&hc

1) exp(&D�w0(�))
1+h1&hc

1 &
&1�2

(3.35)

Also for the opposite limit D � 0, : � ?�2 an explicit analytical result
is easily derived, since in this limit

Dr2w0\?
2

&:+ (3.36)

and

F tot
excr

D
4

+
D

4w2
0

&2h1 cos :+
2
*

cos2 :

r
D
4

&2h1 \?
2

&:++\2
*

+
1
D+ \

?
2

&:+
2

(3.37)

Minimization with respect to : yields

?
2

&:r
h1

2�*+1�D
rh1 D, D � 0 (3.38)

and hence we obtain an equation analogous to the weak segregation limit,

w0(D)rh1 �2 (3.39)
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IV. NUMERICAL SELF-CONSISTENT FIELD CALCULATIONS
FOR CONFINED INTERFACES OF POLYMER MIXTURES
WITH FINITE CHAIN LENGTH

We start the treatment by writing the partition function Z of a system
of nA chains of type A and nB chains of type B in the volume V with inter-
actions E( \̂A , \̂B) as a functional integral(51)

Z=
1

nA ! nB ! | D[r� :] P[r� :] D[r� ;] P[r� ;] exp _&
8

kBT | d3r� E( \̂A , \̂B)&
(4.1)

where D[r� :] stands for the functional integration of the coordinates of all
the monomers of type A, D[r� ;] the corresponding term for the monomers
of type B, and P[r� :], P[r� ;] are the corresponding probability distribu-
tions of the chain conformations in the reference system. Since we compare
the results of the SCF calculations with simulation data(48) we use the bond
fluctuation model in the athermal limit as a reference system. In the
framework of this coarse grained lattice model each effective monomer
blocks all 8 sites of an elementary cube of the lattice, and working at
8=1�16 where half of the available sites are filled corresponds to a dense
melt.(21) In the following all lengths are measured in units of the lattice
spacing.

Defining density operators as

\̂A(r� )=
1
8

:
nA

:=1

:
NA

i=1

$(r� &r� :, i) (4.2)

where the first sum runs over all A chains and the second sum over all
monomers of the :'th chain, being at positions r� :, i , and similarly \̂B(r� ).
The normalized energy expression can be written as

E

dBT
=

`
2

(\A+\B&1)2&
q=
2

(\A&\B) _1+
1
2

l2
0

�2

�z2&(\A&\B) (4.3)

where the first term is identical to the second term of Eq. (3.4), while the
second term represents a pairwise monomer�monomer interaction of finite
range l0 (in practice we take l2

0=16�9, when we try to represent simulation
results of the bond fluctuation model). Here q is an effective coordination
number, and = a normalized energy between a pair of monomers (2q==/,
the Flory�Huggins interaction parameter).(21) While in the previous section
we have considered the limit where NA=NB=N � � and ` � � (incom-
pressible melt of infinitely long chains); we here relax both these approxi-
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mations simultaneously, allowing both N finite (in the numerical example
shown in Fig. 3 we have chosen N = 32), and the compressibility ` also
is taken finite (8=1�16 corresponds to `=4.1, as discussed elsewhere(21)).

Eqs. (4.1)�(4.3) is a very general formulation of the statistical
mechanics of polymers, which we here drastically simplify in terms of a
mean field approximation. The free energy density f then can be expressed
as (F=&kBT ln Z).

f =
F

8kBTV
=

\� A

NA
ln \� A+

\� B

NB
ln \� B+

1
V | d 3r E(\A , \B)

&
1
V | d3r� [wA\A+wB\B]&

\� A

NA
ln zA[wA]&

\� B

NB
ln zB[wb] (4.4)

with \� A=1&\� B=nA NA �8V, wA , wB being the effective fields, and zA , zB

the partition functions of single chains,

z:=
1
V | D[r� :] P[r� :] exp _& :

N:

i=1

w:(r� i)& , :=A, B (4.5)

The self-consistent fields follow from:

wA=`(\A+\B&1)&q= _1+
1
2

l2
0

�2

�z2& (\A&\B) (4.6)

\A=
\� A V

NAzA

DzA

DzA
=\� A :

:

Pw
1

NA
:
NA

i=1

V$(r� &r� :, i) exp _& :
N:

i=1

w:(r� :, i)&<N

(4.7)

where N is a normalizing denominator, N=�: Pw exp[&�N:
i=1 w:(r� :, i)],

the sum over : is a sum over a representative sample of (Monte-Carlo-
generated) polymer conformations (in practice 7 } 106 A chains and 7 } 106

B chains are used), and the probability Pw , of the confined polymer, in
unnormalized form, is

Pw={0
exp(\=wnw)

(4.8)

Here, Pw=0 applies if any monomer falls outside of the walls of the film,
while otherwise the weight depends on the number nw of monomers
experiencing the potential due to the wall =w the + sign applies for A
monomers at the left wall or B monomers at the right wall, while the &
sign applies for B monomers at the left wall or A monomers at the right
wall.
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In practice the unknown functions \A(r� ), \B(r� ) that result from the
solution of Eqs. (4.6) and (4.7) are found by choosing a Fourier decom-
position into a set of basis functions appropriate for the chosen geometry,

fk(z)=- 2 sin
?kz
D

, k=1, 2, ... (4.9)

The coefficients of this Fourier decomposition are found iteratively by the
Newton�Raphson method. Note that the most difficult part of the present
numerical SCF scheme actually is the summation over the sample of
polymer conformations, which is done on a CRAY T3E multiprocessor
machine.

Figure 4 shows typical profiles resulting from this method for N=32
and three choices of =. While for ==0.03 we have a strongly segregated case
quite comparable to the corresponding Monte Carlo results, for ==0.016
we have a profile that already develops the shape characteristic of the weak
segregation case (Fig. 1). Figure 5 shows the thickness dependence of w(D)
resulting for this model at ==0.03, comparing the SCF results with the
corresponding Monte Carlo results from Werner et al.(48) Note that these
Monte Carlo results are not the full width of the profiles shown in Fig. 3��
which include also effects due to capillary wave broadening that cannot be
taken into account by the above SCF treatment��but rather are constraint
by recording the mean square interfacial width only on a lateral length

Fig. 4. Plot of the intrinsic order parameter profile m(z) vs. z, in units of the radius of
gyration for chain length N=32 and three choices of =. Curves result from the numerical
self-consistent field scheme, Eqs. (4.2)�(4.9).
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Fig. 5. Intrinsic width w(D) plotted vs D�Rg for polymers of chain length N=32, and energy
parameters ==0.03, =w=0.1. The curve shows the result extracted from the numerical self-con-
sistent field scheme [Eqs. (4.2)�(4.9)], while squares are the Monte Carlo data of Werner
et al.(48) For extracting the intrinsic width from the simulations a lateral grid size B_B (with
B=8 lattice spacings) was used.(48)

scale B=8 lattice spacings (the system is divided into a grid of B_B sub-
blocks, and the local position of the interface in each subblock is recorded
separately to obtain this local width). The proper choice of the value of this
grid size B is discussed elsewhere.(48, 49)

V. DISCUSSION AND CONCLUSIONS

In this paper we have considered the change of the ``intrinsic'' width
w0(D) of an interface between coexisting phases confined in a thin film
between ``competing walls'' a distance D apart. We have considered first
two limiting cases which can both be treated by ``gradient square''-type
theories, namely the Cahn�Hilliard theory of a weakly segregated sym-
metric binary mixture (Section II) and the Helfand theory of a strongly
segregated incompatible polymer mixture in the limit of infinite chain
lengths (Section III). In both cases the reduction of the interfacial width
w0(D) due to confinement can be easily worked out, and a region where
w0(D) varies approximately linearly with D occurs in both cases. Treating
finite chain lengths for polymers, a numerical scheme has been used (Sec-
tion IV) which also allows the treatment of cases intermediate between
weak and strong segregation (Fig. 4). In this way, the different regimes
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proposed for the concentration profile in Fig. 1 quantitatively could be
demonstrated explicitly.

There is one important drawback of our treatment, however: while
all variants of mean field theories (like those presented in the previous
sections) readily yield ``intrinsic'' interfacial profiles, the latter are not
well-defined in the framework of rigorous statistical mechanics, and conse-
quently there is no unique way to define them either in a computer simula-
tion nor in an experiment on real materials. The actual interfacial width
w(D) observed in both simulations and experiments exhibits an additional
broadening due to fluctuations in the local position of the center h(z, y) of
the interface away from its average position (h(x, y)) (=0, in our choice
of coordinate system, where the plane z=0 of the (x, y, z)-coordinate
system is halfway in between the confining walls).

Werner et al.(48) have discussed the extent to which one can describe
this broadening in terms of a convolution approximation,

\A(z)=|
+D�2

&D�2
dh \ int

A (z&h) PD(h) (5.1)

where \ int
A (z&h) is the intrinsic profile, for an interface centered at z=h,

and PD(h) describes the probability that a deviation h from the average
value (h) =0 occurs for a film thickness D. It then was assumed that this
probability distribution is a Gaussian, PD(h)=exp(&h2�2s2)�- 2?s2, and
hence one finds for the total mean square width

w2(D)=w2
0(D)+

?
2

s2(D) (5.2)

In order to calculate the additional broadening due to the interfacial
position fluctuations, s2(D), an approximation was used where the interface
is described by an effective interface Hamiltonian describing capillary
waves in a harmonic potential:

Heff (h)=| dx dy {_(D)
2 _\�h

�x+
2

+\�h
�y+

2

&+
a
2

exp \&
}D
2 + h2= (5.3)

where _(D) is an effective interfacial stiffness (which converges to the inter-
facial stiffness _#_(�) of a free unconfined interfaces as D � �), a is a
constant, and }&1 is a decay length which is of the order of the correlation
length !b in the weak segregation case, but of the order of w0(�)=b�- 6/
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in the limiting case of strongly segregated polymer mixture with N � �.
Using Eq. (5.3), one then obtains that s2(D) B D for large D, since

s2(D)=
1

2? |
2?�B

0

dq
_(D) q2+a exp(&}D�2)

�
}(D) D
8?_(D)

+const (5.4)

Note that short wavelengths need to be cut off if they are less than some
length B, in order that the integral in Eq. (5.4) converges. For self-con-
sistency, all fluctuations on length scales smaller than B must be included
in the intrinsic width w0(D). However, there is no obvious theoretical
recipe that would uniquely define this cutoff B, and thus the separation of
interfacial fluctuation into ``intrinsic'' and ``capillary wave''-type is some-
what arbitrary. In the simulations, B=8 lattice spacings was chosen simply
for the reason that then w0(D � �) agrees with the self-consistent filed
calculations, and as Fig. 5 demonstrates, there is then fair agreement
between the SCF prediction for wo(D) and the Monte Carlo observation
for all D. However, apart from this fact one has no reason for not chosing
B=7 or B=9, for instance. Also the analysis of the capillary wave spec-
trum in the confined geometry did reveal a pronounced dependence of
_(D) on D in the same regime where w0(D) differs appreciably from w0(�).
As yet, an analytical approach to accurately predict the interface stiffening
(_(D) is enhanced for small D) due to confinement is lacking. It is con-
ceivable that also the constants a and } of the effective interface potential
VD(h)=a exp(&}D�2) h2�2 are no true constants but also depend weakly
on D.

Particularly cumbersome is the theoretical understanding of the cross-
over between the weak segregation case and the strong segregation limit of
a polymer mixture. Just as two lengths control the interfacial profile, (12) the
length w0(�)=b�- 6/ shows up in the center of the profile, the radius of
gyration Rg=b - N�6 in the wings, we expect two decay constants in the
potential VD(h), namely

Vd (h)= 1
2 h2[a exp(&D�w0(�))+a$ exp(&D�2Rg)] (5.5)

While the amplitude a$ of the second term vanishes in the strong segrega-
tion limit, when mb � 1, it decays much slower with increasing D than the
first term, for large N, and, hence the interplay between these terms is
subtle. We expect that a similar expression will interpolate between our
weak segregation result for w0(D) (Eq. (2.21)), and the strong segregation
result Eq. (3.36). Similarly, it is not clear whether the cutoff length B
should be of the order of w0(�) or of the order of Rg , in this case. Finally,
we remind the reader that the exponential variation of VD(h) with D is
only appropriate for short range forces between the walls and the molecules
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of the mixture, not for the��physically more realistic��long range van der
Waals forces. Thus, our treatment is a first step towards the resolution of
a rather complex problem only. But there is clear experimental evidence(47, 50)

that the effects discussed here are indeed practically relevant. Thus we hope
that our study will stimulate further efforts to understanding this problem.

ACKNOWLEDGMENTS

Support by the Deutsche Forschungsgemeinschaft (DFG), Grant
No Bi314�18, and by the Bundesministerium fu� r Bildung, Wissenschaft,
Forschung und Technologie (BMBF), Grant No 03N8008C, is gratefully
acknowledged. The authors thank J. Klein and T. Kerle for stimulating
discussions.

REFERENCES

1. B. Widom, in Phase Transitions and Critical Phenomena, Vol. 2, C. Domb and M. S.
Green, eds., Academic Press, London (1972), p. 79.

2. J. S. Rowlinson and B. Widom, Molecular Theory of Capillarity, Clarendon, Oxford
(1982).

3. K. Binder, in Phase Transitions and Critical Phenomena, Vol. 8, C. Domb and J. L.
Lebowitz, eds., Academic Press, London (1983), p. 1.

4. D. Jasnow, Rep. Progr. Phys. 47:1059 (1984).
5. I. C. Sanchez, ed., Physics of Polymer Surfaces and Interfaces. Butterworth�Heinemann,

Boston (1992).
6. J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 28:258 (1958).
7. A. Vrij, J. Polym. Sci. Part A2 2:1919 (1968).
8. E. Helfand and Y. Tagami, J. Chem. Phys. 56: 3592 (1972); 57:1812 (1972).
9. E. Helfand, J. Chem. Phys. 62:999 (1975); E. Helfand and A. M. Sapse, ibid. 62:1327

(1975).
10. J. F. Joanny and L. Leibler, J. Phys. (Paris) 39:951 (1978).
11. J. Noolandi and K. M. Hong, Macromolecules 15:482 (1982); K. M. Hong and

J. Noolandi, ibid. 14:727 (1981); 13:1083 (1983).
12. K. Binder and H. L. Frisch, Macromolecules 17:2924 (1984).
13. E. Helfand, S. M. Bhattacharjee, and G. H. Fredrickson, J. Chem. Phys. 91:7200 (1989).
14. G. Gompper and M. Schick, Phys. Rev. Lett. 62:1647 (1989); F. Schmid and M. Schick,

Phys. Rev. E 48:1882 (1993).
15. D. Broseta, G. H. Fredrickson, E. Helfand, and L. Leibler, Macromolecules 23:132 (1990).
16. K. R. Shull and E. J. Kramer, Macromolecules 23:4769 (1990).
17. K. R. Shull, ibid. 25:2122 (1991); 26:2346 (1993).
18. K. R. Shull, A. M. Mayes, and T. P. Russell, Macromolecules 26:3929 (1993).
19. A. N. Semenov, Macromolecules 26:6617 (1993); 27:2732 (1994).
20. D. C. Morse and G. H. Fredrickson, Phys. Rev. Lett. 73:3235 (1994).
21. M. Mu� ller, K. Binder, and W. Oed, J. Chem. Soc. Faraday Trans. 91:2369 (1995);

M. Mu� ller and A. Werner, J. Chem. Phys. 107:10764 (1997).
22. F. Schmid and M. Mu� ller, Macromolecules 28:8639 (1995).
23. K. Binder, Acta Polymerica 46:204 (1995).

1067Interfacial Profiles Between Coexisting Phases in Thin Films



24. R. R. Netz, D. Andelman, and M. Schick, Phys. Rev. Lett. 79:1058 (1997).
25. M. D. Lacasse, G. S. Grest, and A. J. Levine, Phys. Rev. Lett. 80:309 (1998).
26. A. Werner, F. Schmid, M. Mu� ller, and K. Binder, Phys. Rev. E 59:728 (1998).
27. F. P. Buff, R. A. Lovell, and F. H. Stillinger, Phys. Rev. Lett. 15:621 (1965).
28. W. Helfrich, Z. Naturforschung C 28:693 (1979).
29. S. Dietrich and M. Napiorkowski, Physica A 177:437 (1991); M. Napiorkowski and

S. Dietrich, Z. Phys. B 89:263 (1992); Phys. Rev. E 47:1836 (1993); Z. Phys B 97:511
(1995).

30. E. M. Blokhuis and D. Bedeaux, J. Chem. Phys. 95:6986 (1991); Physica A 184:42 (1992);
Mol. Phys. 80:705 (1993).

31. F. Schmid and K. Binder, Phys. Rev. B 46:13553, 13565 (1992).
32. J. W. Cahn, J. Chem. Phys. 66:3667 (1977).
33. C. Ebner and W. F. Saam, Phys. Rev. Lett. 38:1486 (1977).
34. D. E. Sullivan and M. M. Tela da Gama, in Fluid Interfacial Phenomena, C. A. Croxton,

ed., Wiley, New York (1986), p. 45.
35. M. E. Fisher, J. Chem. Soc. Faraday Trans. II 82:1569 (1986).
36. S. Dietrich, in Phase Transitions and Critical Phenomena, Vol. 12, C. Domb and J. L.

Lebowitz, eds., Academic Press, London (1988), p. 1.
37. M. Schick, in Liquids at Interfaces, J. Charvolin, J. F. Joanny, and J. Zinn-Justin, eds.,

North-Holland, Amsterdam (1990, p. 415).
38. A. O. Parry, J. Phys. Condens. Matter 8:10761 (1996).
39. E. V. Albano, K. Binder, D. W. Heermann, and W. Paul, Surface Sci. 223:151 (1989).
40. A. O. Parry and R. Evans, Phys. Rev. Lett. 64:439 (1990).
41. M. R. Swift, A. L. Owczarek, and J. O. Indekeu, Europhys. Lett. 14:475 (1991).
42. A. O. Parry and R. Evans, Physica A 181:250 (1992).
43. K. Binder, D. P. Landau, and A. M. Ferrenberg, Phys. Rev. Lett. 74:298 (1995); Phys.

Rev. E 61:2823 (1995).
44. C. J. Boulter and A. O. Parry, Phys. Rev. Lett. 74:3403 (1995); Physica A 218:109 (1995);

J. Phys. A 29:1873 (1996); A. O. Parry and C. J. Boulter, Physica A 218:77 (1995); Phys.
Rev. E 53:6577 (1996).

45. K. Binder, R. Evans, D. P. Landau and A. M. Ferrenberg, Phys. Rev. E 56:5023 (1995).
46. A. M. Ferrenberg, D. P. Landau, and K. Binder, Phys. Rev. E 58:3353 (1998).
47. T. Kerle, J. Klein, and K. Binder, Phys. Rev. Lett. 77:1318 (1996).
48. A. Werner, F. Schmid, M. Mu� ller, and K. Binder, J. Chem. Phys. 107:8175 (1997).
49. A. Werner, M. Mu� ller, F. Schmid, and K. Binder, J. Chem. Phys. 110:1221 (1998).
50. T. Kerle, J. Klein, and K. Binder, Eur. Phys. J. B. 7:401 (1999).
51. M. Mu� ller and K. Binder, Macromolecules 31:8323 (1998).
52. M. Stamm and D. W. Schubert, Annu. Rev. Mater. Sci. 25:326 (1995).
53. M. Sferrazza, C. Xiao, R. A. L. Jones, D. G. Bucknall, J. Webster, and J. Penfold, Phys.

Rev. Lett. 78:3693 (1997).
54. M. Mu� ller and F. Schmid, in Annu. Revs. Comput. Physics VI, p. 59, D. Stauffer, ed.,

World Scientific, Singapore (1999).
55. I. Schmidt and K. Binder, J. Phys. (Paris) 46:1631 (1985).
56. J. S. Wang and K. Binder, J. Chem. Phys. 94:8537 (1991); G. G. Pereira and J. S. Wang,

J. Chem. Phys. 104:5294 (1996); 105:3849 (1996).
57. A. Werner, Dissertation, Johannes Gutenberg Universita� t Mainz (1998, unpublished).

1068 Binder et al.


